Archive for May, 2019

Rates of niche and phenotype evolution lag behind diversification in a temperate radiation

Monday, May 20th, 2019
Folk, R. A., R. L. Stubbs, M. E. Mort, N. Cellinese, J. M. Allen, P. S. Soltis, D. E. Soltis, and R. P. Guralnick. 2019. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. PNAS 201817999. [View on publisher’s site]


Figure 1 from Folk et al 2019

Ancestral reconstruction across Saxifragales for PC1 of our dataset of 35 environmental variables; branches are colored in a rainbow scale from low ordinated values (red and yellow; hotter and to some extent wetter habitats, as well as the hottest arid habitats) to high ordinated values (green and blue; mostly colder and drier habitats). Black dots at nodes represent major ecological niche shifts (the upper 95th percentile of node–parent node differences). Red dots at nodes represent diversification shifts in the maximum credibility set. The inset density curves show tip rates for diversification (green), niche (orange), and phenotype (blue), all scaled from the minimum to the maximum reconstructed value. Around the edge are photographs of major representative habitats. Family codes are as follows: (a) Peridiscaceae, (b) Paeoniaceae, (c) Daphniphyllaceae, (d) Cercidiphyllaceae, (e) Altingiaceae, (f) Hamamelidaceae, (g) Iteaceae, (h) Grossulariaceae, (i) Saxifragaceae, (j) Cynomoriaceae, (k) Tetracarpaeaceae, (l) Aphanopetalaceae, (m) Penthoraceae, (n) Haloragaceae, and (o) Crassulaceae.

Alternative models of evolutionary processes suggest different associations between species diversification and trait evolution, but limited empirical evidence is available to test these models across large clades at global extents. Here we investigate the relative timing of species diversification and niche and phenotypic evolution across a global plant radiation (Saxifragales) with enormous phenotypic and habitat variation. We demonstrate strong temporal lags among rates, with increased diversification occurring first, followed by niche and phenotype. Accelerated diversification rates are coincident with mid-Miocene expansion of temperate biomes. Later increases in niche and phenotypic evolutionary rates argue against density-dependent diversification alone, indicating a major role for ecological opportunity. These results have broad implications for understanding diversification processes and the origin of present-day temperate biotas.


Origin of angiosperms and the puzzle of the Jurassic gap

Thursday, May 9th, 2019
Figure 1 from Li et al 2019Li, H.-T., T.-S. Yi, L.-M. Gao, P.-F. Ma, T. Zhang, J.-B. Yang, M. A. Gitzendanner, P. W. Fritsch, J. Cai, Y. Luo, H. Wang, M. van der Bank, S.-D. Zhang, Q.-F. Wang, J. Wang, Z.-R. Zhang, C.-N. Fu, J. Yang, P. M. Hollingsworth, M. W. Chase, D. E. Soltis, P. S. Soltis, and D.-Z. Li. 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants 1. [View on publisher’s site | Free PDF download]