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“The report of my death was an exaggeration.”  

 

Mark Twain, New York Journal, June 1897 

 

 

INTRODUCTION 

Mayrose et al. (2011) and Arrigo and Barker (2012) concluded that young 

polyploid lineages have higher extinction rates than diploid lineages. Arrigo & Barker 

(2012, p. 140) refer to ‘rarely successful’ polyploid lineages and state that “…most 

[polyploids] are evolutionary dead-ends”. We have already written at length regarding 

our concerns on the general approach and conclusions of Mayrose et al. (2011; see Soltis 

et al. 2014a), and we will minimize repeating them here. Our goal is to respond as 

succinctly as possible to the recent reply by Mayrose et al. (2014), and to address some 

additional, fundamental problems with the approach used by Mayrose et al. (2011, 2014). 

We stress again that the conclusions of Mayrose et al. (2011, 2014) and Arrigo and 

Barker (2012) regarding the fate of polyploid lineages were premature (or perhaps an 

“exaggeration” in the words of Mark Twain). In the spirit of cooperation typical of this 

research area, we also propose a research path forward.  

 Polyploids may well have higher extinction rates than diploids, as Mayrose et al. 

(2011, 2014) and Arrigo and Barker (2012) concluded. Our point is simple—these papers 

do not convincingly demonstrate this fate in established polyploid lineages; certainly 
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strong conclusions regarding the fate of polyploids (as in Arrigo and Barker, 2012, in 

particular) should not be made. In fact, a recent paper by this team using the same 

methods finds the reverse—in fish, polyploids diversify at higher rates than diploids (see 

below). We stress again that there are methodological as well as sampling issues with 

Mayrose et al. (2011), which render their conclusions unjustified. In particular, we show 

that their main method is biased in several ways that have not been previously 

emphasized. 

 

MISSING LINKS FROM MAYROSE ET AL. (2011) 

We acknowledge that Soltis et al. (2014a) misinterpreted the error in Table S2 of 

Mayrose et al. (2011), and we are glad that the error has now been corrected. Similarly, a 

bug in Mesquite (Maddison and Maddison, 2015) has now been fixed. Lastly, the details 

provided in Mayrose et al. (2014) make the methods of data cleansing much more 

transparent and allay many of the concerns about inconsistencies highlighted in Soltis et 

al. 2014. We thank the authors for their clarifications and corrections, and it is gratifying 

that both Soltis et al. (2014a) and Mayrose et al. (2014) have clarified many points. 

However, many of our concerns remain, and we present some further details on these and 

additional cautions. 

 

SYSTEMATIC BIAS IN BiSSE 
 
 

To test the approach of Mayrose et al. (2011), we simulated trees with similar 

characteristics to the empirical trees and then followed their method for assessing 

differences in divergence rates. The analysis was carried out in R (R Core Team, 2013) 
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using the diversitree package which implements the BiSSE model (Maddison, 2007). All 

of the R scripts used for this paper are in the supplementary material. In the simulations, 

both the diploid speciation rate λD and the polyploid speciation rate λP were set to 0.2, 

and the corresponding extinction rates µD and µP were both set to 0.1. The transition rate 

qDP was set to 0.02. The trees were allowed to grow for a maximum of 26 time units. 

Trees with fewer than ten tips, and those with diploids only or polyploids only at the tips, 

were rejected. These settings were found to produce trees with a similar range of sizes to 

those in the empirical data set of Mayrose et al. (2011), with about one third of the tips 

being polyploid. The simulated trees were then analyzed using the methods of Mayrose et 

al. (2011), using a Bayesian approach and the Markov chain Monte Carlo (MCMC) 

method described in FitzJohn et al. (2009).  

The main result is shown in Figure 1, which is directly comparable to Figure 1A of 

Mayrose et al. (2011). In our case, however, the bias towards one (high posterior 

probabilities for diploids having higher diversification rates) is a pure artifact. The reason 

for the bias is not yet fully understood. However, the situation is clearly asymmetric 

between diploids and polyploids: diploids can become polyploids, but not vice versa, and 

there are more diploids than polyploids in the set of trees. The supplementary material 

contains two examples of how bias can occur in similar, but simpler situations.  

Mayrose et al. (2014) argue that “approaches like…[theirs] …that consider the 

preponderance of evidence across multiple clades is the best way to assess whether a 

trait, like polyploidy, affects diversification in a repeatable way.” A meta-analysis of the 

type conducted by Mayrose et al. (2011) is indeed attractive. It can reduce the variance of 

individual analyses so that a useful signal can be revealed. However, it is vulnerable to a 
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systematic bias affecting all the individual analyses, as our results show. Used on a single 

tree, BiSSE is unlikely to produce misleading results. The bias will usually be 

overwhelmed by uncertainty. Figures S1 and S2 show that the bias diminishes with tree 

size, and other results with larger trees (such as Figure S3, supplementary material) 

confirm this. The results of meta-analyses using BiSSE are likely to be affected by bias if 

the true transition rates are significantly different and the tree sizes are fairly small, as in 

the case of the empirical data analyzed by Mayrose et al. (2011). 

In support of their argument, Mayrose et al. (2014) present data from Goldberg 

and Igic (2008), indicating in Figure 1 that speciation rate estimates are centered near the 

true values, and report, but do not show, ‘similar’ results for extinction rates. These 

results appear at first sight to be in conflict with our results, so some explanation seems 

warranted.  

In Figure 1 of Mayrose et al. (2014), there is no information about the number of 

terminals (species) in the trees of the Goldberg and Igic (2008) simulations. However, in 

all but the center and left panels of the bottom row of the figure, which have 55 and 56 

terminals, respectively, the number of terminals is over 100. The genera included in 

Mayrose et al. (2011) have a mean of only 38.7 terminals, and over half have fewer than 

30 terminals.  The estimates in Figure 1 of Mayrose et al (2014) show a large uncertainty 

in these two panels, and it is not clear whether this hides a systematic bias. Furthermore, 

Mayrose et al. (2014) do not specify what measure of centrality they use. Because some 

of the distributions are quite skewed, a median and mean (for example) could give 

different results. 
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In the supplementary material we show results that shed more light on the issue. 

In Figure S1 we show posterior means of the parameters λD, λP, µD, µP, qDP, and of the 

difference rD - rP between the diploid divergence rate rD = λD - µD and the polyploid 

divergence rate rP = λP - µP, plotted against tree size. The estimates for λD, λP, and µD are 

not noticeably biased, but µP, qDP, and rD - rP are clearly overestimated. In Figure S2 we 

show maximum likelihood estimates (MLEs) of the same quantities. These estimates 

have much wider spread than the posterior means. The results for speciation rates and for 

µD are similar in general form to those in Figure 1 of Mayrose et al. (2014), but others are 

not. The distributions of the MLEs of µP and qDP are extremely diffuse and highly 

skewed. For example, estimates of µP can exceed 2.0, more than twenty times its true 

value of 0.1, while around a quarter of the estimates are less than 0.0001. The median of 

the MLEs of µP is 0.094, a little low, but the mean is 0.211, over double the true value. 

The only safe conclusion we can draw is that MLEs of µP and qDP are almost useless for 

trees of this size. 

Further supporting our call for caution in interpreting the Mayrose et al. (2011, 

2014) results, Robosky and Goldberg (2015) recently explored the use of BiSSE and 

showed the “ease with which neutral traits are inferred to have statistically significant 

associations with speciation rate.” They conclude that the “surprising severity of this 

phenomenon suggests that many trait diversification relationships reported in the 

literature may not be real.” 

 

 
 
RETICULATION ISSUES 
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A large fraction of polyploidization events are thought to have arisen by 

hybridization (allopolyploidy), thus making the tree model inadequate for species 

phylogenies. Mayrose et al. (2014) acknowledge this as a potential problem for their 

approach, but argue that their conclusions are unaffected by this, because the results 

between analyses made on cpDNA trees do not differ significantly from those from other 

trees that are based on cpDNA and concatenated nuclear data or nuclear data only.  

Although non-recombined plastid genomes will produce tree-like phylogenies, this 

disregards the fact that the actual diploid parents of an allopolyploid may be extinct, 

something that could greatly overestimate the age of an allopolyploid (Doyle and Egan 

2010; Fig. 2). 

Reticulation presents another problem for the method of Mayrose et al. (2011). 

There is an increased awareness that gene and species trees are fundamentally different 

(e.g., Pamilo and Nei, 1988; Doyle, 1992; Edwards, 2009), and that concatentation of 

unlinked genes may result in trees that are poor estimates of species trees (e.g., Degnan 

and Rosenberg, 2009). In the case of allopolyploid species networks, the situation is 

further complicated by the fact that the homeologues of an allopolyploid usually cannot 

be assigned to its parental lineages a priori (e.g., Huber et al., 2006, Jones et al., 2013). 

Thus, uncritical concatenation of sequences from the plastid genome and unlinked 

nuclear sequences may result in chimeras (Bertrand et al., 2015). Such “hybrid taxa” are 

known to tend to branch off close to the root if analyzed in a phylogenetic tree context 

(e.g., McDade, 1992). Similar, but perhaps less serious, concerns can be made on the use 

of nuclear ribosomal DNA cistron repeats (i.e., ITS, Álvarez and Wendel, 2003). Again, 
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the consequence is that the method of Mayrose et al. (2011) may result in an 

underestimate of the diversification rate in allopolyploids. 

 Mayrose et al. (2014) state that polyploids “arise but fail to persist.” A 

fundamental problem with this statement is that it does not take into account the long-

term evolutionary history of most groups of angiosperms, in which all contemporary taxa 

are derived from polyploidization (e.g., Jiao et al., 2011; Amborella Genome Project, 

2014), be it neo- or paleopolyploidization. In fact, most of the oldest angiosperm clades 

demonstrate chromosome numbers (and gene content; e.g., Cui et al., 2006) consistent 

with polyploidy, which would suggest that polyploids are truly the taxa that persist on 

long-term evolutionary scales (see also mature polyploid complexes; Stebbins, 1971). We 

realize that Mayrose et al. (2014) were framing that statement in the context of 

neopolyploids (although they have no real temporal component in their analyses), but we 

caution that the statement is an overgeneralization and diminishes what we know 

regarding the repeated evolutionary success of polyploids throughout angiosperms. 

Mayrose et al. (2011) did address the long-term issue in their supplemental material. It is 

possible for polyploids to have a lower divergence rate but nonetheless dominate diploids 

in the long term, if the rate at which diploids produce new polyploids is high enough. 

This can be proved mathematically and shown in easy simulations.  

The temporal component remains a key element of our critique of their work. As 

they point out, diversification rates are calculated per unit time, such that estimates for 

younger polyploid clades are not biased relative to those of older diploid clades. 

However, the amount of diversification in two clades of different ages but diversifying at 

equal rates will not be the same, and it is these patterns of diversity that are used to 
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estimate rates.  Thus, clade age becomes important. Mayrose et al. (2011) compared the 

relative diversification rates of polyploids and diploids within a clade and assumed 

therefore that absolute age is not an issue. However, as they later point out (and as we 

noted in Soltis et al. 2014a), a polyploid clade is necessarily younger than its diploid 

parents (see below for further discussion).  

 

DIPLOIDS HAVE A HEAD START 

 Soltis et al. (2014a) stressed that diploids had a head start over any subsequently 

formed polyploids in terms of diversification—this is a logical point (Marcussen et al., 

2015), and Mayrose et al. (2014) ironically use this to argue against sister-clade 

comparisons (suggested by Soltis et al., 2014; see below), stating: “In addition, such 

sister-clade comparisons have been shown recently to be inherently biased in cases where 

one character state is more often the derived one. In these cases, there must be a transition 

from the ancestral to the derived state on the branch subtending the derived-state clade. 

The ancestral-state clade, however, gets a head start by already being in that state, so the 

time available for diversification of the derived state is less, causing it to artificially 

appear in clades with lower species richness (Käfer and Mousset, 2014).” This is exactly 

our original criticism—the Mayrose et al. (2011) approach is biased in that diploids have 

more time to diversify than do the polyploid lineages they spawn.  

 

CLADE-SPECIFIC ERRORS 

 Mayrose et al. (2014) report that 21 of 63 clades show significantly higher 

diversification rates for diploids than polyploids, meaning that 2/3 of the clades do NOT 
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show higher diversification rates in diploids. Furthermore, at least a few of those clades 

that are reported to exhibit higher diploid rates continue to be plagued by 

misinterpretation of evolutionary history and ploidy: the GAMA clade and Tiquilia are 

presented below. 

 

GAMA  

Mayrose et al. (2014) continue to argue that the GAMA clade of 

Greenovia/Aeonium/Monanthes/Aichryson (Crassulaceae) is an example of higher 

diversification of diploids vs. tetraploids, stating: “Nevertheless, even if we use the three 

datasets as reanalyzed by S2014 (= Soltis et al., 2014), the preponderance of evidence … 

continues to support higher diversification rates for diploids…” We find this example 

particularly egregious, as our lab generated the original paper on the GAMA clade (Mort 

et al., 2001). We know these results well, and in fact, this example is what first caused us 

to question Mayrose et al. (2011) more broadly. Mort et al. (2001) inferred n = 15 or n = 

18 as the ancestral haploid chromosome number for the GAMA clade. This clade 

comprises exclusively polyploid taxa and thus is clearly an example of diversification at 

the polyploid level. 

As stressed in Soltis et al. (2014), Mayrose et al. (2011) violated their practice of 

focusing at the genus level in that the GAMA clade comprises four genera. If Mayrose et 

al. (2011) had taken just one step out to include the well-supported sisters to the GAMA 

clade, Sedum modestum or S. jaccardianum, the picture would change dramatically in 

that members of the GAMA clade have 2n = 30, 34, 36, and 72; the sister taxa are 2n = 

18 (Mort et al. 2001). Soltis et al. (2014) used the Mayrose et al. (2011) data and did not 
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add counts for species of Aichryson, so the Mayrose et al. (2011) methods erroneously 

inferred Aichryson to be diploid. If, as Mayrose et al. (2014) have now done, counts for 

Aichryson are added, the whole GAMA clade is polyploid (as inferred previously by 

Mort et al., 2001), and there is not even an appropriate data set to analyze with BiSSE. A 

clade with no known diploids cannot have higher rates of diversification for diploids as 

asserted by Mayrose et al. (2011, 2014)! The GAMA clade can demonstrate nothing 

other than that diversification is at the polyploid level, with additional polyploidy 

(Aeonium steussyi, 2n = 72) having occurred—exactly the conclusion of Mort et al. 

(2001). This example also points to the larger problem stressed in Soltis et al. (2014)—

genera are artificial constructs, and moving out a few nodes can change the results.  

 

TIQUILIA 

 Mayrose et al. (2014) concede that the Tiquilia data set they used was an example 

of a general bias in their data because polyploids are often underrepresented in gene 

sampling (one of the points of Soltis et al., 2014). However, their new attempt to discount 

our conclusion of a high polyploid speciation rate in the clade is unfounded. They state: 

“Thus, Tiquilia represents a potential example where a bias against genotyping 

polyploids led to their underrepresentation in our dataset. However, because the genes 

used to generate the S2014 phylogeny (rps16 and ITS) were said by Moore et al. (2006) 

to be incongruent and, for ITS, difficult to align, reliable conclusions about Tiquilia must 

await a more complete and robust genetic dataset.” However, the genes used to generate 

the original phylogeny for Tiquilia (Moore et al., 2006) or our re-estimated phylogeny 

(Soltis et al., 2014) do not show incongruences in the backbone phylogeny or in the 
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placement of the polyploid taxa, which are stably placed. A more complete and robust 

genetic dataset is not needed to know the placement of the polyploid taxa, nor to see that 

the polyploid clade is a sterling example of rapid speciation at the polyploid level that has 

facilitated morphological and geographical evolution (see also Moore et al., 2006).  

These errors in the analyses of the GAMA clade and Tiquilia were obvious to us 

because we are familiar with these data sets; we cannot comment on the veracity of the 

remaining individual analyses, but we caution that meta-analyses are only as powerful as 

the underlying data. No matter the statistical rigor or precision of an analysis, 

fundamental misinterpretations, as occurred here for GAMA and Tiquilia, cannot be 

overcome.  

 

FISH—REVERSAL OF FORTUNE 

If polyploids diversify less than do diploids, then why was the reverse result 

obtained for fish in a paper produced by the Mayrose et al. (2011) team (Zhan et al., 

2014)?  Based on the Mayrose et al. (2011) conclusion that polyploid plants have lower 

rates of diversification than diploids, it seems counterintuitive to propose that fish are 

doing something fundamentally different with polyploidy than are angiosperms or ferns. 

However, Zhan et al. (2014) assert: “our results suggest that polyploidy is associated with 

different diversification patterns in these two major branches of the eukaryote tree of 

life.” This statement points to different rates of diversification following polyploidy in 

different groups of organisms and therefore contradicts the strong conclusions leveled 

against the fate of polyploids in Arrigo and Barker (2012). The differing results might 

reflect differences in the depth of where polyploidy occurred in the phylogeny—Zhan et 
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al. (2014) and Mayrose et al. (2014) suggest that their analysis of fish (at the family level) 

is deeper phylogenetically than the Mayrose et al. (2011) work on plants (at the genus 

level—usually). Mayrose et al. (2014) admit that the fish example is problematic: 

“conducting analyses at deeper phylogenetic levels might reveal greater evolutionary 

success for polyploidization events earlier in plant evolution (just as deeper phylogenetic 

analyses carried out in fishes did not find lower polyploid diversification; Zhan et al., 

2014).” 

This statement from Mayrose et al. (2014) highlights additional problems with the 

logic of Mayrose et al. (2011, 2014). First, they equate taxonomy with age--angiosperm 

and fern genera are “young”, but fish families are “old”. But there is no age component to 

the analyses of Mayrose et al. (2011, 2014) or Zhan et al. (2014). Importantly, Soltis et al. 

(2014) showed a huge range in ages across the genera sampled by Mayrose et al. 

(2011)—not all genera are young in age. Relative age is an important component to this 

discussion (as we repeatedly have noted); it is not considered by the methods of Mayrose 

et al. (2011) but can be added using the approach we advocate below. 

In addition, the opposing results for fish may simply reflect problems of small 

sample size in the studies of both plants and fish. That is, the small number of taxa used 

and the actual choice of target genera may have unduly impacted the results in Mayrose 

et al. (2011). Perhaps if we picked a suite of 50 or more different angiosperm lineages, 

we would get the results obtained for fish. This was one of the points of Soltis et al. 

(2014), that sample sizes in Mayrose et al. (2011) were very small and not representative 

of angiosperms in general, as no truly complex polyploid species groups were included. 

Totals of 63 of ~12,000 -angiosperm genera (a lineage of 300,000-400,000 species) and 5 
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of ~550 families of fish, including ~450 of the roughly 27,000 recognized fish species, 

are not enough to make strong generalizations regarding the fate of polyploid lineages. 

Whether due to sampling issues or phylogenetic depth, or both, the contrasting results of 

Zhan et al. (2014) and Mayrose et al. (2011) indicate that broad generalizations regarding 

the fate of polyploids (as in Arrigo and Barker, 2012) were premature. 

ONE PATH FORWARD 

 Although clarifications by Mayrose et al. (2014) enable further use of their 

methods, we do not advocate their approach for studies of recent polyploids because 

reticulation violates the paradigm of bifurcating, tree-like evolution (Soltis et al., 2014 

and above). However, the fate of polyploid and diploid lineages through evolutionary 

time remains an important and unanswered problem, and we suggest investigation of 

more ancient polyploidy events across phylogenies, at timescales that (generally) are 

consistent with the tree paradigm. We endorse the use of large, densely sampled, 

ultrametric trees to plot whole-genome duplications and examine diversification rates 

after those events for significant shifts in diversification associated with the whole-

genome duplications. Mayrose et al. (2014) criticize the use of sister-clade comparisons, 

but sister-clade comparisons might be just one approach that could be employed across 

phylogenies. Note that our proposed approach does not rely explicitly on sister clades but 

evaluates shifts in diversification across the tree. Furthermore, the fates of polyploid 

lineages can be evaluated regardless of arbitrary taxonomic rank (as in the use of ‘genus’ 

by Mayrose et al., 2011 and Zhan et al., 2014), across densely sampled phylogenies and 

along a common, absolute time scale. In angiosperms, large dated trees are available, 

making this approach possible (e.g., Smith et al., 2011; Zanne et al., 2014), and the Open 
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Tree of Life (opentreeoflife.org) provides trees and methods of tree synthesis at truly 

grand scales. This large phylogeny approach was recently taken by Tank et al. (accepted 

pending revision) and gives a fresh perspective on polyploidy and diversification; this is a 

general methodology that we hope others will embrace and develop further.   

 Lastly, we do agree with our close colleagues (Mayrose et al., 2014) that the best 

thing that can come from this friendly back and forth discussion is an increased research 

interest in polyploids. 
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Figure legends 

 

Figure 1.  Number of trees vs. the probability that diploids diversify faster than 

polyploids in diversitree analysis implementing BiSSE. This analysis is directly 

comparable to Figure 1A of Mayrose et al. (2011) (see text). In our analyses, the bias 

towards 1 (high posterior probabilities for diploids having higher diversification rates) is 

an artifact. 

 

Figure 2.  Hypothetical true vs. inferred trees illustrating one of the difficulties in using a 

phylogenetic approach to examine polyploidy.  In this example, non-recombined plastid 

genomes will produce tree-like phylogenies, disregarding the fact that the actual diploid 

parents of an allopolyploid may be extinct. This approach could greatly overestimate the 

age of an allopolyploid. 
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Figures S1 and S2 are based on 200 simulated trees with similar characteristics to those analyzed
in Mayrose et al (2011). Table 1 shows summaries of various estimates from these trees.

Min. Mean Std. dev. Median Max.
posterior mean of �

D

0.0698 0.2016 0.0447 0.2009 0.3468
MLE of �

D

0 0.214 0.103 0.1893 0.8542
posterior mean of �

P

0.0526 0.1899 0.0638 0.1892 0.4135
MLE of �

P

0 0.1876 0.1427 0.1579 0.7812
posterior mean of µ

D

0.032 0.0968 0.0397 0.0905 0.251
MLE of µ

D

0 0.1182 0.1469 0.072 0.8741
posterior mean of µ

P

0.0277 0.1779 0.0936 0.1601 0.5755
MLE of µ

P

0 0.2108 0.3619 0.094 2.6906
posterior mean of q

DP

0.0098 0.0406 0.019 0.0368 0.1216
MLE of q

DP

0 0.0336 0.0335 0.0236 0.2158
posterior mean of r

D

� r

P

-0.1849 0.0929 0.1312 0.062 0.5754
MLE of r

D

� r

P

-0.77 0.119 0.3801 0.0414 2.9324

Table 1: Summaries of posterior means and maximum likelihood estimates of the five parameters and
the di↵erence between divergence rates. The values are rounded to 4 digits.

Figure S3 is based on a set of 280 larger trees. The maximum time for the trees to evolve was
doubled from 26 to 52, and the transition rate q

DP

was halved to 0.01, to keep the the proportion
of polyploid tips roughly 1/3.

A simpler example of bias

We describe a much simpler but analogous statistical analysis which demonstrates a similar type of
bias.

Consider sampling from the density f(x;u) = (1� u)e�(1�u)x, where the parameter u is known to
be in [0, 1]. This is just an exponential density with a non-standard parameterization, and the rate
restricted to be below 1. If the true value of u is near zero, it will be di�cult to get a good
estimate of it: for example, f(x; 0.1) = 0.9e�0.9x is similar to f(x; 0.2) = 0.8e�0.8x and it will be
hard to distinguish samples from them.

Now suppose we have two random samples, namely X = X1, . . . , Xm

from the density f(x; v), and
Y = Y1, . . . , Yn

from the density f(x;w). We would like to test whether v > w. The likelihood
functions are

(1� v)m exp(�m(1� v)X̄) and (1� w)n exp(�n(1� w)Ȳ )

where X̄ and Ȳ are the sample means. If we assume uniform priors for v and w over [0, 1], we can

1



estimate v and w as the posterior mean in the usual way:

v̂ =

R 1
0 v(1� v)m exp(�m(1� v)X̄)dv
R 1
0 (1� v)m exp(�m(1� v)X̄)dv

with a similar expression for ŵ.

Suppose m = 10 and n = 20. These are quite small sample sizes, so estimates may be poor, but
suppose we can repeat the experiment many times. The true values of v and w may be di↵erent for
each experiment, but the distribution of (v̂ � ŵ) over many experiments may give us what we
want. Or maybe not, as the R script simple-analogy.r shows. In the code, X.ssize is m,
Y.ssize is n, and the true value of both v and w is 0.2 for all experiments. The only asymmetry is
that n and m are di↵erent. There are N=63 experiments. Using a t-test on the set of 63 values
(v̂ � ŵ), a p-value is found. The whole thing is then repeated M=100 times. With these settings,
the p-value is less than 0.05 about 2/3 of the time.

There is a loose analogy in which m is a bit like the number of polyploids, n is a bit like the
number of diploids, and v and w are a bit like extinction rates.

2
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Figure S1: Posterior means of the parameters and the di↵erences between divergence rates. The 6
graphs show results for the same 200 simulated trees. These trees are similar to those of Mayrose et al.
(2011). The solid lines show true values, the dashed lines show the means, and the dotted lines show
medians.
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Figure S2: Maximum likelihood estimates of the parameters and the di↵erences between divergence
rates. Other details as figure S1. Note the large scale of some y-axes.

4



●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●● ●

● ●

●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

0 500 1000 1500 2000

0.
05

0.
10

0.
15

0.
20

0.
25

Posterior means of λD

Number of tips

λ D
 m

ea
ns

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0 500 1000 1500 2000

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Posterior means of λP

Number of tips

λ P
 m

ea
ns

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

● ●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0 500 1000 1500 2000

0.
05

0.
10

0.
15

0.
20

0.
25

Posterior means of µD

Number of tips

µ
D
 m

ea
ns

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●●

●

●
●●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●● ●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

● ●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 500 1000 1500 2000

0.
1

0.
2

0.
3

0.
4

0.
5

Posterior means of µP

Number of tips

µ
P 

m
ea

ns

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●
●●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●●
● ●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
● ●

●
●

●
●
●

●
●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●●

●
●

●

●

● ●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

● ●

●

●

●

● ●

●

●

● ●●
●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●

● ●
●

●

●

●
●

●

●●

● ●

●

●

●

●●●●

●

●

●

● ●

●

●
●
●

● ● ●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

● ●
●● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

0 500 1000 1500 2000

0.
01

0.
03

0.
05

0.
07

Posterior means of qDP

Number of tips

q D
P 

m
ea

ns

●
●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●● ●

●

●●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●
●●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●●

●

●

●
● ●

●

●●
●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●●
● ●●

●

●

●

●
●

●

●
●

●
●

●

●

●

0 500 1000 1500 2000

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

Posterior means of differences
 between divergence rates

Number of tips

(λ
D
−
µ

D
−
λ P

+
µ

P)
 m

ea
ns

Figure S3: Posterior means of the parameters and the di↵erences between divergence rates, for a set of
280 larger trees. The solid lines show true values.
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