Ceramic Petrography of Woodland Period Swift Creek Complicated Stamped pottery in Florida and the lower Southeastern United States

Ann S. Cordell, Neill J. Wallis (Florida Museum of Natural History, University of Florida), Thomas J. Pluckhahn (University of South Florida)

1. **Introduction.** Swift Creek Complicated Stamped pottery is a premier material for study of Woodland period social interactions in the SE U.S. Unique design impressions of individual vessels represent movement of actual pottery vessels from northern sites, mostly from large ceremonial centers. Interaction in or study region was dominated by (1) gift offerings of vessels transported from ceremonial centers to distant burial mounds, (2) exchange of wooden paddles to or from ceremonial centers, and (3) travel of individuals or small groups among sites on journeys that almost always included one or more ceremonial centers.

2. **Sampling.** This study focuses on the Gulf coastal plain of Florida and southern Georgia area of the Swift Creek region.

3. **Methods.** Petrographic analysis for evaluating and quantifying compositional and textural variability:
 - Thin sections initially gross sorted by temper or principal constituent.

4. **Gross tempers.** Tempers or constituents include quartz, polycrystalline quartz, ferric and clayey-phosphatic nodules, grog (sherd) temper, amphibole-rich intermediate igneous rock ("mica"), sponge spicules, and limestone. Quartz sand is a predominant constituent in most categories.

5. **Petro-fabrics.** Eight petro-fabrics defined for pottery and clays. A, C, and Ea are micaceous, distinguished by presence and/or type of siliceous microfossil. B, D, and Eb are non-micaceous and likewise distinguished by presence and/or type of siliceous microfossils. F is equal to St. Johns spiculate paste. G refers to clays with a calcareous matrix.

6. **Integration with designs and paddle matches.** Pottery samples, local production of limestone, and non-micaceous tempers.

7. **Conclusions.** 27 distinct designs have matches with 11 vessels lot from multiple sites within and without study area, representing: 55 study samples (+ 10 not sampled); 18 sites; 6 regional clusters; 5 tempers (all but mafic, St. Johns, limestone); 5 petro-fabrics (all but Eb, F); 17 temper/fab combinations; and 10 unknowns. For example, the Tallahassee Hills regional cluster shown below shows near and far reaching connections: 13 designs, 36 vessels; 11 sites, 6 regional clusters; 5 tempers, 4 petro-fabrics, 11 temper-fabric combos and 1 unknown.

Acknowledgments. Support for this research was provided by National Science Foundation Grant Nos. 1111397 and 1130703 and Werner Grant Foundation Grant No. 8327.