

Seagrass-Associated Mollusk Assemblages along a Nutrient Gradient in the Big Bend Region of Florida, Gulf of Mexico

Katherine E. Cummings^{1, 2}, Savanna Barry³, Michal Kowalewski¹, Thomas Frazer³ ¹ Florida Museum of Natural History, University of Florida (UF); ²School of Natural Resources and the Environment, UF; ³Fisheries Department, UF

Introduction:

Seagrasses provide a broad suite of ecosystem services of both ecological and economic value, but have been vanishing worldwide at alarming rates and are expected to decline further from the effects of global climate change. Because seagrasses do not fossilize well, it is difficult to examine their long-term responses to past environmental changes and develop informed forecasting models for how they might respond to future environmental change. We therefore evaluate the use of mollusk assemblages as a proxy for seagrass beds in the Gulf of Mexico to assess seagrass response to historic environmental conditions.

Some of the many animals that utilize Florida seagrass beds. Clockwise from left: A small epresentation of the diverse epifaunal community found on seagrass blades – shown here is a bay scallop and snail species an endangered West Indian hanatee gliding over a seagrass bed; the scallop fishery is a vita economic driver in the Gulf Coast – scallops are found predominately in seagrass beds and a green sea turtle indulging in some seagrass.

The Study Location:

- A conspicuous nutrient gradient characterizes the study area – phosphorus delivery to coastal waters increases from south to north
- This region is one of the best remaining examples of seagrass habitats worldwide – good for establishing a baseline
- Well-established water quality and seagrass abundance monitoring sites

Methods:

- Cores were taken through seagrass beds using a corer with 205 cm³ volume
- Material screenwashed through a 1-mm sieve
- Modern mollusk separated by species and counted to obtain a diversity index
- Water quality and seagrass abundance were captured by partnering researchers.

References:

1) "Lucinisca" Dall 1901 (clam)". Fossil Works: Gateway to the Paleobiology Database. 2) Tunnel et al. 2010 *Encyclopedia of Texas Seashells*. College Station, TX: Texas A&M University Press.

Acknowledgements: The authors wish to thank Morgan Edwards and Sky Notestein from the Frazer Lab for assistance with data collection and John Slapcinsky (FLMNH) for help with shell

Preliminary Results:

							Γ	Лах	CH_S9	CH_S9	CH_S10	CH_S10	CR_S5	CR_S8	HM_S2	HM_S2	HM_S6	HM_S6	WA_S7a	WA_S7b	WW_S8	WW_S9
						Trophic		Size	C1	C2	C2	C3	C3	C3	C1	C2	C2	C3	C1_3	C1_3	C3	C2
Class	Order	Superfamily	/ Family	Genus	Species	Level	Tiering (I	nm)	Aug13	Aug13	Aug13	Aug13	Aug13	Aug13	Aug13	Aug13	Aug13	Aug13	Aug13	Aug13	Aug13	Jun14
Gastropoda	Heterobranchia	Philinoidea	Cylichnidae	e Acteocina	candei	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Bivalvia	Veneroida	Tellinoidea	Tellinidae	Angulus	c.f. texanus	5,6	1	0	33	6	1	28	0	1	0	0	0	1	4	0	12	208
Bivalvia	Veneroida	Tellinoidea	Tellinidae	Angulus	sp. 1	5,6	1	0	0	8	4	0	0	0	0	0	0	0	1	0	0	0
Bivalvia	Veneroida	Tellinoidea	Tellinidae	Angulus	tampaensis	5,6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	63
Bivalvia	Veneroida	Lucinoidea	Lucinidae	Anodontia	alba	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
Bivalvia	Veneroida	Veneroidea	Veneridae	Anomalocardia	cuneimaris	5	1	0	1	3	0	3	0	0	0	0	0	0	3	0	64	· 11
Bivalvia	Arcoida	Arcoidea	Noetiidae	Arcopsis	adamsi	5	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Gastropoda	Vetigastropoda	Trochoidea	Liotiidae	Arene	sp.	4	2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Bivalvia	Ostreoida	Pectinoidea	Pectinidae	Argopecten	sp. 1	5	2	0	0	1	0	0	3	2	0	1	0	0	0	0	1	. 0

Trophic level key: 1 = predator; 2 = scavenger; 3 = algivore; 4 = microp/epiphyte grazer; 5 = filter/suspension feeder; 6 = deposit feeder; 7 = detrivore **Tiering key:** 1 = infaunal; 2 = epifaunal

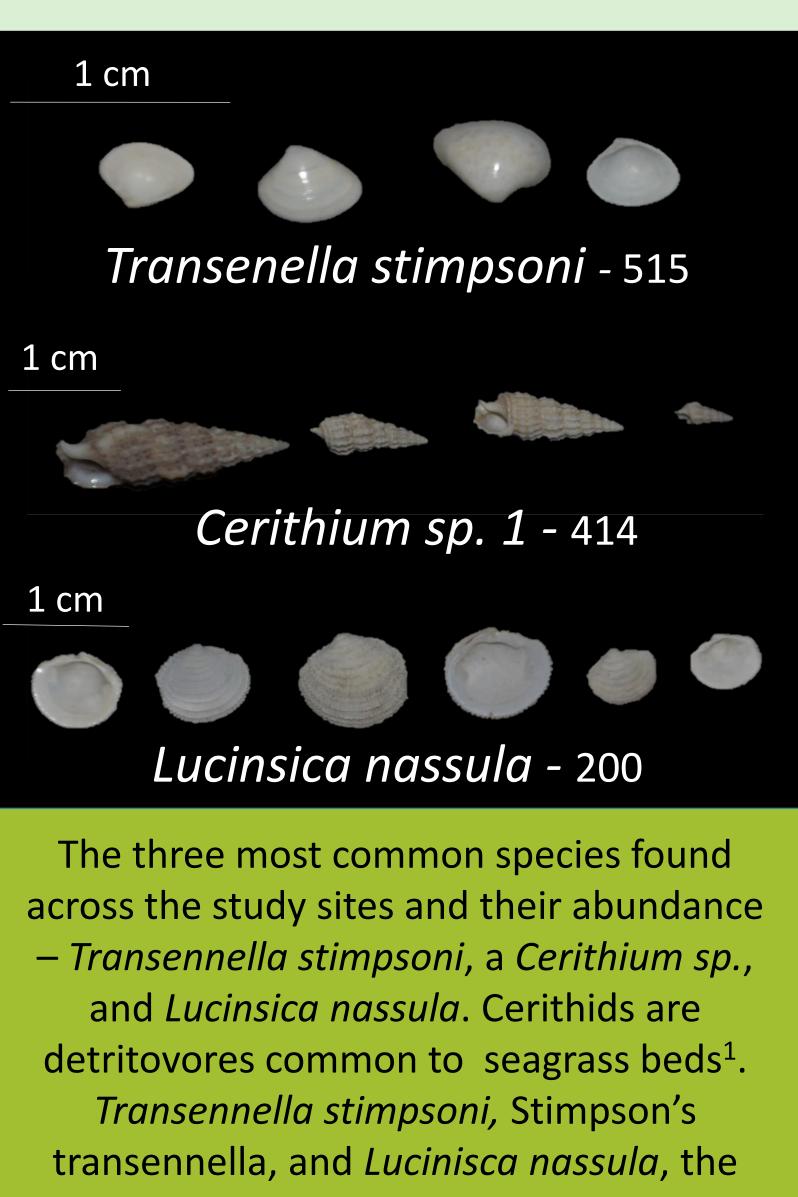
First nine rows of current dataset, with site names in alphabetical order. CH = Chassahowtizka, CR = Crystal River, HM = Homasassa, WA = Wacasassa, and WW = Weeki Wachee. Specimens were identified to the lowest taxonomic level possible. Tiering refers to where an animal physically inhabits the system – infaunal or epifaunal.

Species Found:

73 species in 50 genera (and counting):

Acteocina candei Angulus c.f. texanus Angulus sp. Anugulus tampaensis Anodontia alba Anomalocardia cuneimaris Crepidula spp Arcidae sp. Arcopsis adamsi Arene sp. Argopecten sp. Astryris lunata Bittiolum varium Boonea impressa Brachidontes exustus Brachidontes domingensis Bulla striata Buscotypus plagesus Carditamera floridana Cerethium c.f. atratum Cerethium sp. Chione elevata Codakia orbicularis

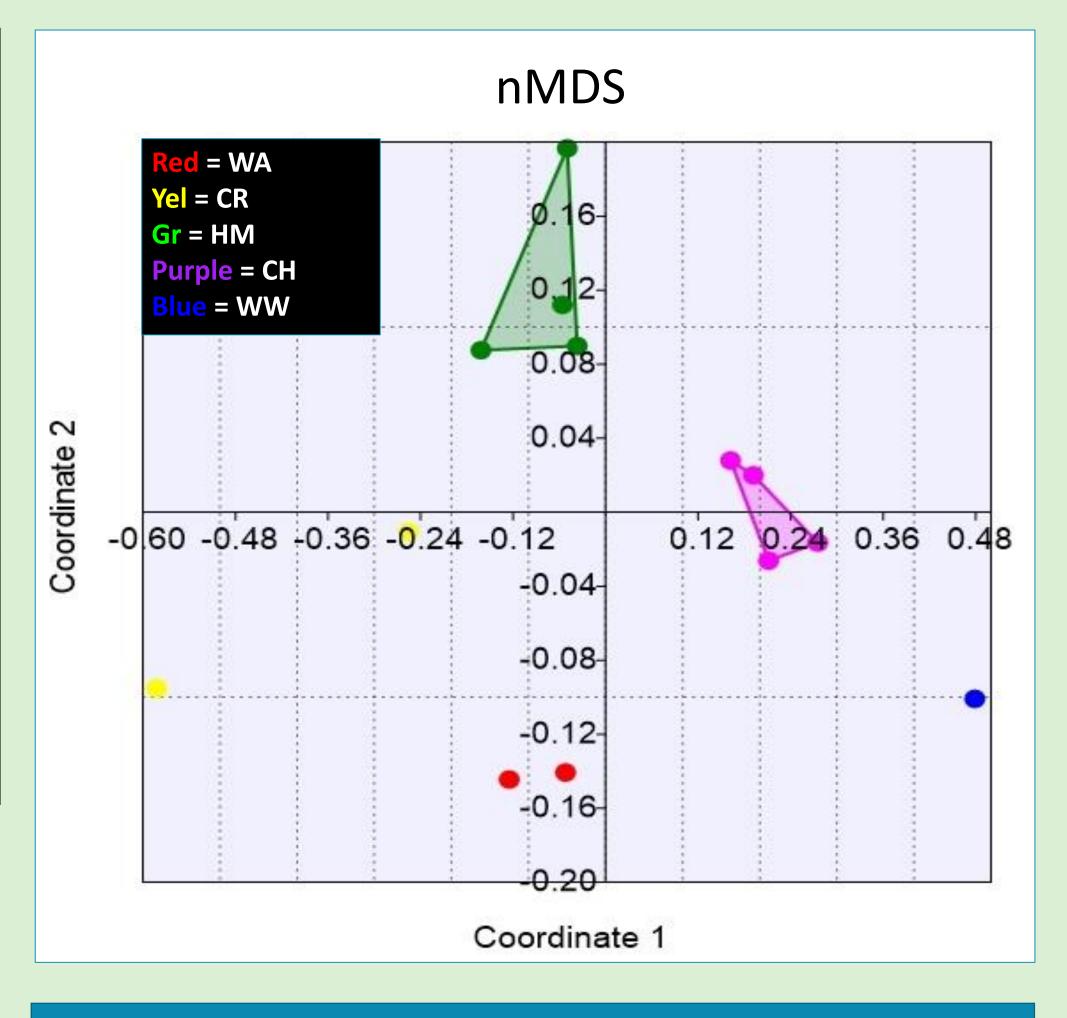
Conus sp. Costoanachis semi Crassostrea virgini Crepidula convexa Crepidula depressa Eulithium affine Eurytellina angulos Fasciolaria lilium Gastropoda spp Ischadium recurvu Janthina globosa Kurtziella c.f. limon Laevicardium mort Longchaeus crenu Lucinidae sp. Lucinisca nassula Macoma sp. Marginalla sp. Melongea corona Modulus modulus Mytilus exustus


Future Research:

When complete, the proxy developed can be used to assess paleontological records of seagrass beds from the recent past. Having this information will help conservationists and land managers learn how this ecosystem responded to certain stressors in the absence of anthropogenic stresses and help establish a historic range of variation for seagrasses in this area.

We hope to assess:

- Are there other determining factors in mollusk assemblages for this region?


	Nassarius c.f. vibex	
plicata	Nassarius polyganatus	
са	Olivella c.f. mutica	
	Olivella sp.	
7	Ostreidae sp.	
	Parastarte triquetra	
	Pectinidae sp.	
sa	Petaloconchus varians	
	Pilsybrspria leucocyma	
	Prunum apicina	
m	Pteria colymbus	
	Pteriidae sp.	
nitella	Rubellatomea diomedea	
toni	Schwwarziella catesbyana	
atus	Tagelus pleibius	
	Transennella stimpsoni	
	Turbo castanea	
	Turridae spp	
	Urosalpinx perrugata	
	Vermetus sp.	

• How are species abundances and distribution related to environmental characteristics of the sties? • Is there a clear gradient in molluscan death assemblages between sites that follows the productivity gradient in the study area?

woven lucine, are shallow water bivalves. ucinids are generally found in shallow mud or sand flats in areas of low nutrients².

Non-metric multidimensional scaling using Bray-Curtis index of species abundances across sites. Different river systems do seem to group together, but more data will be necessary to fully elucidate what is going on here. Distance metric used: Bray-Curtis. Stress = 0.068.