Integrative biology of acoustic communication in Neotropical singing mice
Bret Pasch\(^1\), Polly Campbell\(^2\) & Steven M. Phelps\(^3\)

\(^1\)Department of Biology, University of Florida \(^2\)Department of Ecology & Evolutionary Biology, University of Arizona \(^3\)Section of Integrative Biology, University of Texas at Austin

VOCAL ONTOGENY
Both male & female pups produce precursors of the adult trill when isolated from their mothers. Vocalizations decrease in dominant frequency & become more stereotyped with age. Compared to males, females rarely vocalize after 45 days.

FEMALE PREFERENCE
The ability of females to perceive variation in male motor performance is likely a common mechanism underlying mate choice in animals.

INDIVIDUAL VARIATION
As adults, a mechanical trade-off exists between how fast notes are repeated & the frequency bandwidth of each note, resulting in a performance limit. Some males (filled dots) are better performers than others.

GEOGRAPHIC VARIATION
Acoustic, genetic, & geographic distance are highly correlated, suggesting that population differentiation in vocalizations is largely shaped by genetic drift.

SOUND PROPAGATION & PERCEPTION
We are currently investigating how animals perceive vocalizations that are severely degraded after traveling through the cloud forest understory.

Please visit http://people-biology.ufl.edu/adults.php for audio & video.

Major funding provided by NSF & The American Society of Mammalogists.